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Excess

Definition (Excess)
For a TU game (N,v), the excess of coalition C for a
payoff distribution x is defined as ¢(C,x) = v(€) —x(€).

We saw that a positive excess can be interpreted as an
amount of complaint for a coalition.

We can also interpret the excess as a potential to generate
more utility.
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A first definition

Remember that the set of feasible payoff vectors for (N,v,8)
is X(n,5) ={x € R"| for every C€ 8 : x(C) <v(C)}.

Definition (Kernel)
Let (N,v,8) be a TU game in coalition structure. The
kernel is the set of imputations x € X(n,s) s.t. for any
coalition € € 8, for each objection P of an agent k € C
over any other member [ € C to x, there is a counter-
objection of I to P.
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Properties

Theorem
Let (N,v,8) a game with coalition structure, and let
Jmp # 0. Then we have:
o (i) Nu(N,v,8) CK(N,v,8)
o (ii) K(N,v,8) € BS(N,v,8)
Theorem
Let (N,v,8) a game with coalition structure, and let
Jmp # (. The kernel K(N,v,8) and the bargaining set
BS(N,v,8) of the game are non-empty.
Proof

Since the Nucleolus is non-empty when Jmp # 0, the
proof is immediate using the theorem above. ]

B& stephane Airiau (ILLC) - Cooperative Games Lecture 6: The Kernel 7

One last stability concept from the bargaining set family:

The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval
Research Logistics Quarterly, 1965.
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Let (N,v) be a TU game, 8 € .y a coalition structure and
x a payoff distribution. Objections and counter-objections
are exchanged between members of the same coalition in
8. Objections and counter-objections take the form of coali-
tions, i.e., they do not propose another payoff distribution.

LetCe8, keC leC.

Objection: A coalition P C N is an objection of

k against [ to x iff k € P,1 ¢ P and x; > o({l}).
“P is a coalition that contains k, excludes I and which
sacrifices too much (or gains too little).”

Counter-objection: A coalition Q C Nisa
counter-objection to the objection P of k against
latxiff] € Q k ¢ Qande(Q,x) > e(P,x).
“k’s demand is not justified: Q is a coalition that
contains | and excludes k and that sacrifices even more
(or gains even less).”
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Another definition

Definition (Maximum surplus)
For a TU game (N,v), the maximum surplus s;;(x) of
agent k over agent | with respect to a payoff distribu-
tion x is the maximum excess from a coalition that in-
cludes k but does exclude |, i.e.,

ski(x) = max e(C,x).
. CCN|kee,lge

Definition (Kernel)
Let (N,v,8) be a TU game with coalition structure. The
kernel is the set of imputations x € X(y,,) such that for
every coalition € € 8, if (k1) € €2, k # I, then we have
either s (x) = sy (x) or xx =v({k}).

sii(x) < sj(x) calls for a transfer of utility from k to [ unless it is
prevented by individual rationality, i.e., by the fact that x; = v({k}).
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Proof of (i)
Let x ¢ K(N,v,8), we want to show that x ¢ Nu(N,v,8).

x ¢ K(N,v,8), hence, there exists € € CS and (k,1) € €2 such that

sik(x) > s (x) and x; > o({k}).

Let y be a payoff distribution corresponding to a transfer of utility
x; if i#k and i #1

e>0fromktol: yj=< x—eifi=k

x+eifi=I
Since x; > v({k}) and sy (x) > si(x), we can choose € > 0 small
enough s.t.

o xp—e>o({k)
o sily) > suly)
We need to show that e(y)> <y e(x)>.

Note that for any coalition S C N s.t. ¢(S,x) #e(S,y) we have either
o keSand I ¢S (e(S,x) >e(S,y) since e(S,y) =e(S,x)+¢€ >e(S,x))
o k¢S andleS (e(S,x) <e(S,y) since e(S,y) =e(S,x) —e <e(S,x))
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Proof of (i)

Let {By(x),...,Bp(x)} a partition of the set of all coalitions s.t.

o (S5,T) € Bj(x) iff e(S,x) =e(T,x). We denote by ¢;(x) the
common value of the excess in B;(x), i.e. e;(x) =e(S,x) for all
S € Bj(x).
0 e1(x) >ex(x) > >eplx)
In other words, e(x)” = (e1(x),...,e1(x),...,ep(x), ... ep(x)).
-
|By (x)|times |Bat (x) [times
Let i* be the minimal value of i €{1,...,M} such that there is
C € B« (x) with ¢(C,x) #e(C,y).
For all i <i*, we have Bj(x) = B;(y) and e;(x) =¢;(y).

Proof of (ii)

Let (N,v,8) a TU game with coalition structure. Let x € K(N,7,8).
We want to prove that x € BS(N,v,8). To do so, we need to show
that for any objection (P,y) from any player i against any player j
at x, there is a counter objection (Q,z) to (P,y).For the bargaining
set, An objection of i against j is a pair (P,y) where

o PC N is a coalition such that i€ P and j ¢ P.
o y € R? where p is the size of P
o y(P) <v(P) (y is a feasible payoff for members of P)
o VkeP, yy = xx and y; > x;
An counter-objection to (P,y) is a pair (Q,z) where
Q C N is a coalition such that j€ Q and i ¢ Q.
z € RY where g is the size of Q
z(Q) <v(Q) (zis a feasible payoff for members of Q)
VkeQ, zx = xx
Vke QNP zx = yi

© © 0 0 ©

Computing a kernel-stable payoff distribution

o There is a transfer scheme converging to an element in
the kernel.

o It may require an infinite number of small steps.

o We can consider the e-kernel where the inequality are
defined up to an arbitrary small constant e.

R. E. Stearns. Convergent transfer schemes for n-person games. Transac-
tions of the American Mathematical Society, 1968.

o The complexity for one side-payment is O(n-2").

o Upper bound for the number of iterations for
converging to an element of the e-kernel: 7- logz(%),
where 9 is the maximum surplus difference in the
initial payoff distribution.

©

To derive a polynomial algorithm, the number of
coalitions must be bounded. For example, only consider
coalitions which size is bounded in [Ky,K5] . The
complexity of the truncated algorithm is O(1? - Neoglitions )
where Heyitions 18 the number of coalitions with size
in[Ky, K>], which is a polynomial of order Kj.

e M. Klusch and O. Shehory. A polynomial kernel-oriented coalition

algorithm for rational information agents. In Proceedings of the Second
International Conference on Multi-Agent Systems, 1996.

® O. Shehory and S. Kraus. Feasible formation of coalitions among au-

ddi Computational Intel-

agents in P! ve envi
ligence, 1999.
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Proof of (i)

Since sy (x) > sg(x) Bj= contains

O at least one coalition S that contains ! but not k, for such
coalition, we must have e(S,x) > ¢(S,y)

0 no coalition that contains k but not [.
If B;« contains either
O coalitions that contain both k and !
o or coalitions that do not contain both k and /

Then, for any such coalitions S, we have e(S,x) = ¢(S,y), and it
follows that Bj« (y) C Bj« (x).

Otherwise, we have e« (y) < e« (x).

In both cases, we have e(y) is lexicographically less than e(x), and
hence y is not in the nucleolus of the game (N,v,8).

Proof of (ii)
Let (P,y) be an objection of player i against player j to x. i € P,
j€ P, y(P) <v(P) and y(P) > x(P).We choose y(P) =v(P).
0 xj= o({j}): Then ({j},o({j})) is a counter objection to (P,y). ¥/
0 x> o({j}): Since x € K(N,v,8) we have
sj,-(x] > s,-j(x] > v(P)—x(P) > y(P)—x(P) since i€ P, j ¢ P.
Let QC N such that je Q, i ¢ Q and s]-,[x) =9(Q)—x(Q).
We have v(Q) —x(Q) > y(P) —x(P). Then, we have

0(Q) > y(P)+x(Q)—x(P)
z y(PNQ)+y(P\Q)+x(Q\P)—x(P\Q)
> y(PNQ)+x(Q\P) since i € P\Q, y(P\Q) > x(P\Q)

x if ke Q\ P
Yy if ke QNP
(Q,z) is a counter-objection to (P,y). v/

Finally x € BS(N,v,8).

Let us define z as follows {

Computing a kernel-stable payoff distribution

Lecture 6: The Kernel 10

Lecture 6: The Kernel 12

Algorithm 1: Transfer scheme converging to a e-Kernel-
stable payoff distribution for the CS 8§

compute-e-Kernel-Stable(N, v, 8, €)
repeat
for each coalition € € 8 do
for each member (i,j) € C,i#j do // compute the maximum surplus
// for two members of a coalition in §

Sij 4= Maxgcn|(ieR,jgk) ?(R) —x(R)

8+ max; ,ee2 ces Sij — Sjis

(i*,j*) + argmax; ; cne (s —sji);

if (x —o({j}) < 2) then // payment should be individually rational
L d < xp —o({j*});

else
L a4

Xjx < Xjx +d;
Xjr =X —d;

i 8 .
until S5 S €

Summary

o We saw another way to use the excess to make
objections and counter-objections.

o We defined the kernel.

o We proved that both the kernel and the bargaining set
are non-empty if the set of imputations is non-empty.
pros: o If the set of imputations is non-empty, the nucleolus,
kernel, bargaining set are non-empty.
o There is an algorithm to compute a payoff in the kernel.
cons: The algorithm is not polynomial
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Coming next

o The Shapley value.
It is not a stability concept, but it tries to guarantee
fairness. We will see it can be defined axiomatically or
using the concept of marginal contributions.
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